skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lara, Guillermo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data with precise control over the properties of the systems under consideration. Here, we augment the extended conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar Gauss-Bonnet theory and numerically implement it in the open-source p code. Despite the resulting elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes, we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the scalar hair near the black holes can be markedly altered by the presence of the other black hole. The initial data constructed here enable targeted simulations in scalar Gauss-Bonnet simulations with reduced initial transients. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. One of the most promising avenues to perform numerical evolutions in theories beyond general relativity is the approach, a proposal in which new “driver” equations are added to the evolution equations in a way that allows for stable numerical evolutions. In this direction, we extend the numerical relativity code p to evolve a “fixed” version of scalar Gauss-Bonnet theory in the decoupling limit, a phenomenologically interesting theory that allows for hairy black hole solutions in vacuum. We focus on isolated black hole systems both with and without linear and angular momentum, and propose a new driver equation to improve the recovery of such stationary solutions. We demonstrate the effectiveness of the latter by numerically evolving black holes that undergo spontaneous scalarization using different driver equations. Finally, we evaluate the accuracy of the obtained solutions by comparing with the original unaltered theory. Published by the American Physical Society2024 
    more » « less
  3. SpECTRE is an open-source code for multi-scale, multi-physics problems in astrophysics and gravitational physics. In the future, we hope that it can be applied to problems across discipline boundaries in fluid dynamics, geoscience, plasma physics, nuclear physics, and engineering. It runs at petascale and is designed for future exascale computers. SpECTRE is being developed in support of our collaborative Simulating eXtreme Spacetimes (SXS) research program into the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. 
    more » « less
  4. Abstract Binary black holes are the most abundant source of gravitational-wave observations. Gravitational-wave observatories in the next decade will require tremendous increases in the accuracy of numerical waveforms modeling binary black holes, compared to today’s state of the art. One approach to achieving the required accuracy is using spectral-type methods that scale to many processors. Using theSpECTREnumerical-relativity (NR) code, we present the first simulations of a binary black hole inspiral, merger, and ringdown using discontinuous Galerkin (DG) methods. The efficiency of DG methods allows us to evolve the binary through ∼ 18 orbits at reasonable computational cost. We then useSpECTRE’s Cauchy Characteristic Evolution (CCE) code to extract the gravitational waves at future null infinity. The open-source nature ofSpECTREmeans this is the first time a spectral-type method for simulating binary black hole evolutions is available to the entire NR community. 
    more » « less